Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Environ Sci Technol ; 57(49): 20813-20821, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38032317

RESUMO

The photochemical degradation pathways of 6PPD-quinone (6PPDQ, 6PPD-Q), a toxic transformation product of the tire antiozonant 6PPD, were determined under simulated sunlight conditions typical of high-latitude surface waters. Direct photochemical degradation resulted in 6PPDQ half-lives ranging from 17.5 h at 20 °C to no observable degradation over 48 h at 4 °C. Sensitization of excited triplet-state pathways using Cs+ and Ar purging demonstrated that 6PPDQ does not decompose significantly from a triplet state relative to a singlet state. However, assessment of processes involving reactive oxygen species (ROS) quenchers and sensitizers indicated that singlet oxygen and hydroxyl radical do significantly contribute to the degradation of 6PPDQ. Investigation of these processes in natural lake waters indicated no difference in attenuation rates for direct photochemical processes at 20 °C. This suggests that direct photochemical degradation will dominate in warm waters, while indirect photochemical pathways will dominate in cold waters, involving ROS mediated by chromophoric dissolved organic matter (CDOM). Overall, the aquatic photodegradation rate of 6PPDQ will be strongly influenced by the compounding effects of environmental factors such as light screening and temperature on both direct and indirect photochemical processes. Transformation products were identified via UHPLC-Orbitrap mass spectrometry, revealing four major processes: (1) oxidation and cleavage of the quinone ring in the presence of ROS, (2) dealkylation, (3) rearrangement, and (4) deamination. These data indicate that 6PPDQ can photodegrade in cool, sunlit waters under the appropriate conditions: t1/2 = 17.4 h tono observable decrease (direct); t1/2 = 5.2-11.2 h (indirect, CDOM).


Assuntos
Benzoquinonas , Matéria Orgânica Dissolvida , Lagos , Fenilenodiaminas , Fotólise , Espécies Reativas de Oxigênio , Poluentes Químicos da Água , Benzoquinonas/química , Benzoquinonas/efeitos da radiação , Matéria Orgânica Dissolvida/química , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/efeitos da radiação , Fenilenodiaminas/química , Fenilenodiaminas/efeitos da radiação , Lagos/análise , Lagos/química
3.
Environ Pollut ; 334: 122116, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37394053

RESUMO

Tire tread particles (TTP) are environmentally prevalent microplastics and generate toxic aqueous leachate. We determined the total carbon and nitrogen leachate concentrations and chemical profiles from micron (∼32 µm) and centimeter (∼1 cm) TTP leachate over 12 days. Dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) were used to measure the concentration of leached compounds. Nontargeted chemical analysis by comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC/TOF-MS) was used to compare the chemical profiles of leachates. After leaching for 12 days, DOC was 4.0 times higher in the micron TTP leachate than in the centimeter TTP leachate, and TDN was 2.6 times higher. The total GC×GC/TOF-MS chromatographic feature peak area was 2.9 times greater in the micron TTP leachate than the centimeter TTP leachate, and similarly, the total relative abundance of 54 tentatively identified compounds was 3.3 times greater. We identified frequently measured tire-related chemicals, such as 6PPD, N-cyclohexyl-N'-phenylurea (CPU), and hexa(methoxymethyl)melamine (HMMM), but nearly 50% of detected chemicals were not previously reported in tire literature or lacked toxicity information. Overall, the results demonstrate that smaller TTP have a greater potential to leach chemicals into aquatic systems, but a significant portion of these chemicals are not well-studied and require further risk assessment.


Assuntos
Matéria Orgânica Dissolvida , Fenilenodiaminas , Plásticos , Poluentes Químicos da Água , Matéria Orgânica Dissolvida/análise , Matéria Orgânica Dissolvida/química , Matéria Orgânica Dissolvida/classificação , Cromatografia Gasosa-Espectrometria de Massas , Plásticos/análise , Plásticos/química , Plásticos/classificação , Tamanho da Partícula , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Poluentes Químicos da Água/classificação , Fenilenodiaminas/análise , Fenilenodiaminas/química , Fenilenodiaminas/classificação , Medição de Risco
4.
Chemosphere ; 323: 138285, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36868424

RESUMO

Anion exchange resin is responsible for removing harmful anionic contaminants in drinking water treatment, but it may become a significant source of precursors for disinfection byproducts (DBPs) by shedding material during application without proper pretreatment. Batch contact experiments were performed to investigate the dissolution of magnetic anion exchange resins and their contribution to organics and DBPs. Dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) released from the resin were highly correlated with the dissolution conditions (contact time and pH), in which 0.7 mg/L DOC and 0.18 mg/L DON were distributed at exposure time of 2 h and pH 7. The formation potential of four DBPs in the shedding fraction was also revealed that trichloromethane (TCM), dichloroacetonitrile (DCAN), nitrosodimethylamine (NDMA), and dichloroacetamide (DCAcAm) concentrations could reach 21.4, 5.1, 12.1 µg/L, and 69.6 ng/L, respectively. Furthermore, the hydrophobic DOC that preferred to detach from the resin mainly originated from the residues of crosslinkers (divinylbenzene) and porogenic agents (straight-chain alkanes) detected by LC-OCD and GC-MS. Nevertheless, pre-cleaning inhibited the leaching of the resin, among which acid-base and ethanol treatments significantly lowered the concentration of leached organics, and formation potential of DBPs (TCM, DCAN, and DCAcAm) below 5 µg/L and NDMA dropped to 10 ng/L.


Assuntos
Resinas de Troca Aniônica , Técnicas de Química Analítica , Purificação da Água , Resinas de Troca Aniônica/química , Purificação da Água/instrumentação , Matéria Orgânica Dissolvida/análise , Matéria Orgânica Dissolvida/química , Clorofórmio/análise , Clorofórmio/química , Dimetilnitrosamina/análise , Dimetilnitrosamina/química , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Técnicas de Química Analítica/instrumentação , Técnicas de Química Analítica/métodos
5.
Environ Res ; 215(Pt 2): 114300, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36096166

RESUMO

The emission standards for textile printing and dyeing wastewater are stricter due to serious environmental issues. A novel technology, hydrodynamic cavitation combined with ozone (HC + O3), has attracted wide attention in wastewater advanced treatment, whereas the contaminants removal mechanism and transformation of dissolved organic matter (DOM) were rarely reported. This study investigated the removal efficiency and mechanism of HC + O3. The maximum removal rates of UV254, chrominance, CODCr, and TOC were 64.99%, 91.90%, 32.30%, and 36.67% in 60 min, respectively, at the inlet pressure of 0.15 MPa and O3 dosage of 6.25 mmol/L. The synergetic coefficient of HC + O3 was 2.77. The removal of contaminants was the synergy of 1O2, ·OH and ·O2-, and high molecular weight and strong aromaticity organic matters were degraded effectively. The main components in DOM were tryptophan-like and tyrosine-like, which were effectively removed after HC + O3. Meanwhile, most DOM had decreased to low apparent relative molecular weight (LARMW) compounds. Additionally, the HC + O3 effluent can reach the emission standard in 60 min for 8.07 USD/m3. It can be concluded that HC + O3 is an effective technology for the advanced treatment of industrial wastewater. This study will provide suggestions for the engineering application of HC + O3.


Assuntos
Águas Residuárias , Purificação da Água , Corantes , Matéria Orgânica Dissolvida/química , Hidrodinâmica , Ozônio/química , Têxteis , Águas Residuárias/química , Purificação da Água/métodos
6.
Microbiol Spectr ; 9(2): e0153121, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34668747

RESUMO

The microbial carbon pump (MCP) provides a mechanistic illustration of transformation of recalcitrant dissolved organic matter (DOM) in the ocean. Here, we explored and demonstrated the key roles of algae-associated microorganisms (mainly heterotrophic bacteria) in the production and transformation of carboxyl-rich alicyclic molecule (CRAM)-like DOM through a laboratory experiment involving cultures of Skeletonema dohrnii. Without the participation of the associated bacteria, CRAM-like DOM molecules were not detected via Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) in algal cultures treated with antibiotics. Similarly, CRAM-like DOM were not detected in cultures of bacteria alone. Our experimental results showed that algae-associated bacteria are important in the process of converting algal-derived organic matter into CRAM-like DOM during S. dohrnii culture. Bacteroidetes (mainly Flavobacteriia) dominated the bacterial community in the stationary and degradation phases, where the predicted metabolic pathways for bacterial assemblages were mainly involved in biosynthesis, metabolism, and degradation. Facilitated by these heterotrophic bacteria, the amount and the chemodiversity of CRAM-like DOM derived from algae varied during the growth and decomposition of algal cells, and CRAM-like DOM were enriched at the later growth stage. The properties and characteristics of these CRAM-like DOM, including molecular weight, double bond equivalent, hydrogen-carbon ratio, carbon-nitrogen ratio, carbon-sulfur ratio, and modified aromaticity index increased with the growth and decay of algal cells, indicating the transformation from active to recalcitrant DOM. In contrast, the organic matter in axenic cultures of S. dohrnii mainly existed in the form of particulate organic matters (POM), and small amounts of CRAM-like DOM were detected. This study provides the first laboratory evidence to reveal and confirm the direct involvement of algae-associated microbiomes in the production and transformation of algae-derived refractory DOM, highlighting the significance of these epiphytic bacteria in marine carbon sequestration and global carbon cycling. IMPORTANCE Dissolved organic matter (DOM) serves as a major carbon and nutrient pool in oceans, and recalcitrant DOM are the primary sources for carbon sequestration in depths. Here, we demonstrate the critical roles of algae-associated microorganisms (mainly heterotrophic bacteria) in the transformation of recalcitrant dissolved organic matter through laboratory cultures of a model diatom, Skeletonema dohrnii. Our experimental results showed that in addition to affecting the growth and the physiology of S. dohrnii, algae-associated bacteria are important in processing and converting algal DOM into CRAM-like DOM. Facilitated by the associated bacteria, the amount and the chemodiversity of DOM derived from algae varied during the growth and decomposition of algal cells, and enriched recalcitrant DOM formed in the later growth stage. The properties and diversity of DOM increased with the growth and decay of algal cells, indicating the transformation from active DOM to inert organic matter. Our results confirmed that the direct involvement of algae-associated microbes in the production of CRAM-like DOM. Detailed community structure analysis of the algae-associated bacterial community and its predicted functions confirmed the involvement of certain bacterial groups (e.g., Flavobacteriia) in biosynthesis, metabolism, and degradation.


Assuntos
Bactérias/metabolismo , Carbono/metabolismo , Clorófitas/metabolismo , Matéria Orgânica Dissolvida/metabolismo , Fitoplâncton/microbiologia , Bactérias/química , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Biotransformação , Clorófitas/química , Clorófitas/crescimento & desenvolvimento , Clorófitas/microbiologia , Diatomáceas/química , Diatomáceas/crescimento & desenvolvimento , Diatomáceas/metabolismo , Diatomáceas/microbiologia , Matéria Orgânica Dissolvida/química , Lagos/química , Lagos/microbiologia , Espectrometria de Massas , Fitoplâncton/química , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...